МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

СӘТБАЕВ УНИВЕРСИТЕТІ

Институт металлургии и промышленной инженерии Кафедра Инженерной физики

Нұрбаев Беделбек Мұратұлы

Исследование фотокаталитических свойств тонких пленок диоксида титана, полученных методом золь-гель

ДИПЛОМНАЯ РАБОТА

Специальность 5В072300 – Техническая физика

Алматы 2021

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

СӘТБАЕВ УНИВЕРСИТЕТІ

Институт металлургии и промышленной инженерии Кафедра инженерной физики

ДОПУЩЕН К ЗАЩИТЕ

Заведующий кафедрой ИФ Д-р философии (PhD)

Бей _ Р.Е. Бейсенов «25» мая 2021г.

ДИПЛОМНАЯ РАБОТА

На тему: «Исследование фотокаталитических свойств тонких пленок диоксида титана, полученных методом золь-гель»

По специальности 5В072300 – Техническая физика

Выполнил:

Нұрбаев Б.М.

Рецензент: д–р философии (PhD) Старший научный сотрудник, ТОО «Физико-технический институт» Научный руководитель: д–р философии (PhD), Зав. кафедрой ИФ

Р.Е. Бейсенов «25» мая 2021г.

_Н.А. Чучвага 2021г. «30» мая

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

СӘТБАЕВ УНИВЕРСИТЕТІ

Институт металлургии и промышленной инженерииКафедра инженерной физики 5B072300 – Техническая физика

УТВЕРЖДАЮ Заведующий кафедрой ИФД-р философии (PhD)

ΡE

Бейсенов «24» мая 2021г.

ЗАДАНИЕ

на выполнение дипломного работы

Обучающимся: Нұрбаев Беделбек Мұратұлы

Тема: Исследование фотокаталитических свойств тонких пленок диоксида титана, полученных методом золь-гель.

Утверждена приказами ректора университета 2131-б от 24.11.2020 г., 1030-бот 20.03.2020 г.

Срок сдачи законченной работы «03» июня 2021 г.

Исходные данные к дипломному проекту: Изучение тонких пленок диоксид титана и исследование фотокаталитических, структурных, оптических и электрофизических свойств тонких пленок диоксид титана полученных методом золь-гель.

Краткое содержание дипломного проекта:

1. Нанести на стеклянных подложек тонких пленок диоксид титана методом спрей-пиролиз и спин-коутинг полученных золь-гель методом.

2. Исследовать структурных и оптических свойств при нанесенном методом спрей-пиролиз и центрифугирование прозрачных плёнок диоксид титана полученных золь-гель методом.

3. Исследование фотокаталитических свойств прозрачных пленок диоксид титана.

ГРАФИК подготовки дипломного проекта

Наименование разделов,	Сроки представления	Примечание
перечень	научному	
разрабатываемых	руководителю и	
вопросов	консультантам	
Общая характеристика и	21.01.21 - 15.02.21	
свойства диоксид титана		
Разработка тонких плёнок	17.03.21 - 12.04.21	
диоксид титана		
полученных методом		
золь-гель		
Исследование	16.04.21 - 6.05.21	
морфологии, оптических		
и структурных свойства		
полученных образцов		
Результаты исследования	7.05.20 - 20.05.21	
и их обсуждение		

Подписи

консультантов и нормоконтролёра на законченный дипломный проектс указанием относящихся к ним разделов проекта

Наименование разделов	Консультанты	Дата	Подпись
	И.О.Ф.	подписания	
	(уч.степень, звание)		
Нормоконтролёр	Сейфуллина Б.Б.	03.06.21	Б.С.

Научный руководитель 2 ей

Задание приняли к исполнению обучающийся Наев

«03» июня 2021г.

АННОТАЦИЯ

Дипломная работа состоит из 40 страниц, 33 рисунков, 76 использованных источников литературы, работа состоит из введения и четырёх глав.

Целью дипломной работы являлось изучение тонких пленок диоксид титана и исследование фотокаталитических, структурных, оптических и электрофизических свойств тонких пленок диоксид титана полученных методом золь-гель.

Для достижения поставленной цели было необходимо решить следующие задачи:

1. Нанести на стеклянных подложек тонких пленок диоксид титана методом спрей-пиролиз и центрифугирование полученных золь-гель методом.

2. Исследовать структурных и оптических свойств при нанесенном методом спрей-пиролиз и центрифугирование прозрачных плёнок диоксид титана полученных золь-гель методом.

3. Исследование фотокаталитических свойств прозрачных пленок диоксид титана.

Объектом исследования являлись тонкие пленки диоксид титана осажденных методом спрей-пиролиз и центрифугирование полученных зольгель методам.

Методами исследования:

- Фотокаталитическая активность
- Сканирующая электронная микроскопия
- Атомно-силовая микроскопия
- Оптические методы исследования (спектры поглощения и пропускания)
- Рентгеноструктурный анализ

Актуальность работы: Рост индустриализации, который вынуждает использовать невозобновляемые источники энергии, приводит к увеличению В загрязнения окружающей среды. настоящее время водород рассматривается как топливо будущего. Производство водорода фотокаталитическим расщеплением воды технологически просто, а экологически безопасны. TiO₂ выходящие газы ____ широкозонный полупроводник. В природе TiO₂ обычно находится в трех различных кристаллических структурах: рутил, анатаз и брукит. TiO₂ в форме анатаза наиболее распространенным фотокатализатором является выделения водорода. Однако его нельзя использовать в спектре видимого света, так как его запрещенная зона (Eg) для различных кристаллических фаз (анатаз - 3,2 эВ, рутил - 3,0 эВ и брукит - 3,3 эВ) находится в УФ области.

АҢДАТПА

Дипломдық жұмыс 40 беттен, 33 сурет, пайдаланылған 76 әдебиет көздерінен, жұмыс кіріспеден және төрт тараудан тұрады.

Дипломдық жұмысының мақсаты титан диоксидінің жұқа қабықшаларын зерттеу және золь-гель әдісімен алынған титан диоксидінің жұқа қабықшаларының фотокаталистикалық, құрылымдық, оптикалық және электрофизикалық қасиеттерін зерттеу болды.

Осы мақсатқа жету үшін келесі міндеттерді шешу қажет болды:

1. Титан диоксидін жұқа қабықшалардың шыны субстраттарына бүріккіш пиролиз және соль-гель әдісімен алынған центрифугалау әдісімен жағыңыз.

2. Соль-гель әдісімен алынған титан диоксидінің мөлдір қабықтарын спрейпиролиз және центрифугалаудың құрылымдық және оптикалық қасиеттерін зерттеу.

3. Мөлдір титан диоксиді қабаттарының фотокаталитикалық қасиеттерін зерттеу.

Зерттеудің мақсаты - шашыратқыш пиролизбен жиналған титан диоксидінің жұқа қабықшалары және алынған зель-гель әдістерін центрифугалау.

Зерттеу әдістері:

- Фотокаталитикалық белсенділік
- Сканерлеудің электронды микроскопиясы
- Атомдық күштің микроскопиясы
- Оптикалық зерттеу әдістері (сіңіру және беру спектрлері)

• Рентгендік құрылымдық талдау

Жұмыстың өзектілігі: Қалпына келмейтін энергия көздерін қолдануға мәжбүр ететін индустрияландырудың өсуі қоршаған ортаның ластануының артуына экеледі. Қазір сутегі болашақтың отыны ретінде қарастырылуда. фотокаталитикалық бөлу Суды жолмен жолымен сутекті өндіру технологиялық тұрғыдан қарапайым, ал түтін газдары экологиялық таза. TiO₂ - кең аралықтағы жартылай өткізгіш. Табиғатта ТіО2 әдетте үш түрлі кристалды құрылымдарда кездеседі: рутил, анатаза және броукит. Анатаза түріндегі ТіО₂ сутегі эволюциясының кең таралған фотокатализаторы болып табылады. Алайда оны көрінетін жарық спектрінде қолдану мүмкін емес, өйткені оның әртүрлі кристалды фазалар үшін (анатаза - 3,2 эВ, рутил - 3,0 эВ және брукит - 3,3 эВ) тыйым салынған аймағы ультрафиолет аймағында орналасқан.

ABSTRACT

Thesis consists of 40 pages, 33 drawings, 76 used literature sources, the work consists of an introduction and four chapters.

The aim of the thesis was to study titanium dioxide thin films and study the photocatalytic, structural, optical and electrophysical properties of titanium dioxide thin films obtained by the sol-gel method.

To achieve this goal, it was necessary to solve the following tasks:

1. Apply titanium dioxide to glass substrates of thin films by spray pyrolysis and centrifugation of the obtained by sol-gel method.

2. To investigate the structural and optical properties of the spray-pyrolysis and centrifugation of transparent films of titanium dioxide obtained by the sol-gel method.

3. Investigation of the photocatalytic properties of transparent titanium dioxide films.

The object of the study was thin films of titanium dioxide deposited by spray-pyrolysis and centrifugation of the obtained sol-gel methods.

The research methods were:

- Photocatalytic activity
- Scanning electron microscopy
- Atomic force microscopy
- Optical research methods (absorption and transmission spectra)
- X-ray structural analysis

Relevance of the work: The growth of industrialization, which forces the use of non-renewable energy sources, leads to an increase in environmental pollution. Hydrogen is now being viewed as the fuel of the future. Hydrogen production by photocatalytic water splitting is technologically simple, and the flue gases are environmentally friendly. TiO_2 is a wide gap semiconductor. In nature, TiO_2 is usually found in three different crystal structures: rutile, anatase and brookite. TiO_2 in the form of anatase is the most common photocatalyst for hydrogen evolution. However, it cannot be used in the spectrum of visible light, since its forbidden zone (Eg) for various crystalline phases (anatase - 3.2 eV, rutile - 3.0 eV and brookite - 3.3 eV) is in the UV region.

СОДЕРЖАНИЯ

	ВВЕДЕНИЕ	1
1.	ЛИТЕРАТУРНЫЙ ОБЗОР	3
1.1	Диоксид титана	3
1.1.1	Структура	4
1.1.2.	Нанолисты ТіО ₂ (двумерные)	8
1.2	Фотокатализ	8
1.2.1	Гетерогенный и гомогенный фотокатализ	9
1.2.2	Фотокаталитическое расщепление воды	10
1.2.3	Фотокаталитическая активность	11
1.3	Модификации	11
1.3.1	Загрузка благородных металлов	11
1.3.2	Ионный допинг	13
1.3.3	Ионная имплантация	14
1.4	Золь-гель технология	15
2.	ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	18
2.1	Методика осаждения тонких пленок диоксида титана методом золь-	
гель		18
2.2	Нанесение раствора методом спрей-пиролиз и спин-коутинг	19
2.3	Методы исследования	20
3.	РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ	24
3.1	Характеристики оптических свойств тонких пленок TiO ₂	24
3.2	Характеристики морфологии тонких пленок ТіО ₂	27
3.3	Структура пленок ТіО ₂	31
3.4	Характеристики фотокаталитической активности	32
4.	ЗАКЛЮЧЕНИЕ	34
	СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	35

введение

Актуальность темы. Последние десятилетие ученые и инженеры пытаются найти множество способов изготовления материалов в наномасштабе, используя преимущества их уникальных свойств, таких как более высокая прочность, меньший вес, контроль светового спектра и большой химической реакционной способности, которые значительно отличаются от их массивных и растворенных аналогов [1].

Диоксид титана, хорошо изученный полупроводник, нашел свое применение В качестве материала носителя катализатора И В фотокаталитических реакциях из-за таких преимуществ, как низкая стоимость, безвредность, устойчивость к фотоиндуцированной коррозии и простота обращения. Эти свойства делают его пригодным для использования в самоочищающихся поверхностях, противоэлектродах и фотоанодах в сенсибилизированных красителями солнечных элементах, пигментах для ослабления УФ-излучения, супергидрофобном покрытии, фотокатализе, сенсибилизирующем агенте в сонодинамической и фотодинамической терапии, а также в качестве усилители в лучевой терапии и устройствах для расщепления воды. Нанопорошки TiO₂ обычно используются в виде суспензий в водной фазе. При низких температурах порошки TiO₂ обычно имеют великолепное зерно. При нагревании твердых фаз с низкой плотностью и анатаз, и брукит превращаются в рутил, который является более термодинамически стабильной формой полиморфов TiO₂ при температурах от 473 до 1200 °C [2]. Их практическое использование ограничено из-за проблемы разделения на стадии очистки. Однако эта проблема может быть устранена путем иммобилизации наночастиц на устойчивой подложке. Это вызвало большой научный интерес к разработке иммобилизованным TiO₂. пленок с Эти тонких тонкие пленки демонстрируют хорошие электрохимические и фотокаталитические свойства для фотокатализа. В последнее время фотокатализ широко применяется для восстановления окружающей среды, производства водорода путем фоторасщепления воды, контроля запаха и самоочищающихся стекол. Тонкие пленки TiO₂ потенциально могут быть использованы для разложения различных загрязнителей красителей. Фотокаталитическая активность тонких пленок TiO₂ также зависит от текстурных свойств, таких как шероховатость поверхности, толщина, размер зерна ИЛИ частиц, распределение пор по размеру и пористость пленок. Эти текстурные характеристики тонких пленок зависят от свойств золя, таких как реакционная способность золя, вязкость, отношение воды к алкоксиду,

предшественника, комплексообразующий концентрация агент И поверхностно-активное вещество. Свойства золя можно контролировать, варьируя его состав. Спин-покрытие из золь-геля TiO₂ является обычным методом осаждения, используемым для покрытия тонких пленок TiO₂ на стеклянных подложках из-за его низкой стоимости, экспериментальной простоты и легкости масштабирования. Основным недостатком TiO₂ для оптики и фотокатализа является его активность под действием только ближнего ультрафиолетового излучения, которое составляет лишь 4% от всего солнечного спектра, достигающего поверхности Земли. Исследователи пытались настроить ширину запрещенной зоны TiO₂ не менее чем на максимум 0,5 эВ, чтобы сделать его пригодным для видимого света, который занимает 45% солнечной системы. Такая практика уменьшения ширины запрещенной зоны улучшает фотокаталитическую активность и позволяет максимизировать солнечные спектры при фотокатализе. Одним из способов повышения эффективности фотокаталитических и оптических свойств TiO₂ является создание гетерофазных структур.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Диоксид титана

Диоксид титана - амфотерный оксид четырёхвалентного титана обычно он представляет собой белый порошок без запаха и вкуса с молекулярной массой около 79,87 г/моль [3]. ТіО₂ является полупроводником п-типа. присутствовать Диоксид титана может В структурах анатаза, рутила (тетрагональной сингонией) и брукита (ромбической сингонией). Форма рутила может поглощать свет с длиной волны выше 415 нм (только в видимой области), в то время как формы анатаза и брукита поглощают свет с длинами волн от 385 до 390 нм. Температура его кипения составляет 2500-3000 ° С, при давлении 760 мм. рт. ст. (101 325 Па) [4], Температурой плавления 1855 °C. Эти три полиморфа обещают фотокаталитическую реакцию, основанную на его свойствах. Смешанные полиморфы TiO₂ дают хороший признак фотодеградации метиленового синего по сравнению с одиночными полиморфами [4]. А смешанный с анатасом рутил уменьшал фотогенерируемые электронные дырки и увеличивал поглощение света [5]. Смесь рутила и брукита, а также анатаза и брукита известно высокой скорости разложения органических молекул [5]. Примерно 70: 30 фаз от анатаза до рутила, 91: 9 от анатаза до брукита и 61:27:12 фаз от анатаза до рутила до брукита обеспечили высокие фотокаталитические характеристики за счет> 39% разложения метиленового синего при 1-ч. облучение УФсветом [6]. Немногие исследователи также сообщили, что соотношение содержания анатаза торутила 70:30 демонстрирует ≥65% фотодеградации после 1-часового облучения УФ-светом [7], в то время как чистый брукит можеть демонстрировать 92% деградации метиленового синего при 4-ч облучение видимым светом [8]. Таким образом, можно наблюдать, что все три полиморфа действительно действуют как реакционный агент, однако активность фотодеградации зависит от содержания фазы TiO₂. Рутил распространенная форма TiO₂ который стабилен при высокой температуре, в то время как фаза анатаза стабильна при низкой температуре. Фаза брукита является редкой, нестабильной, необычной и не содержит каталитических материалов. TiO2 кристаллическая структура влияет на фотокаталитическую активность. Кристаллическая фаза TiO2 анатаза с шириной запрещенной более 3.34 эΒ обладает относительно высокой зоны реакционной способностью и химической стабильностью [9].

1.1.1 Структура

На рисунке 1 показана кристаллическая структура и строительные блоки рутила, анатаза и брукита. На рисунке 2 показано полиэдрическое представление TiO_6 TiO_2 (B) [10]. Анатаз и рутил имеют тетрагональную структуру, а кристаллические системы брукита и TiO₂ (B) являются орторомбической и моноклинной соответственно [11]. Анатаз и рутил имеют общие строительные блоки октаэдра TiO₆ в более или менее искаженной конфигурации. Структура октаздра более искажена в анатазе, чем в рутиле (Рисунок 1). В рутиле элементарная ячейка содержит две единицы TiO₂, а координационные числа Ті и О равны шести и три, соответственно. С другой стороны, тетрагональная элементарная ячейка анатаза содержит четыре звена TiO₂ с такими же координационными числами Ti и O, что и в рутиле. Параметры решетки известных фаз диоксида титана показаны в таблице 1. И в рутиле, и в анатазе в каждом октаэдре есть две разные длины титанкислородных связей. Рутил имеет четыре расстояния Ti-O 1,946 ± 0,003 Å и два расстояния $1,984 \pm 0,004$ Å. Анатаз также имеет четыре расстояния Ti-O $1,937 \pm 0,003$ Å и два расстояния Ti-O размером $1,964 \pm 0,009$ Å [12]. Объемы элементарных ячеек полиморфов составляют: 35,27 Å.³ для TiO₂(B), 31,12 Å³ для рутила 32,20 Å³ для брукита и 34,02 Å³ для анатаза [13].

Рисунок 1 – Представление плоских строительных блоков Ti₃O (слева) и полиэдров TiO₆ (справа) для фаз TiO₂: рутил (а), анатаз (b) и брукит (c) [14]

Рисунок 2 – Полиэдры ТіО₆ для фазы ТіО₂ (В) [14]

Габлица 1. Параметры решетки и энергия запрещенной зоны полиморфов	Таблиц
TiO ₂ [15]	

Фаза	Кристальная структура	Плотность (г/см ³)	a (Å)	b (Å)	c (Å)	Энергия запрещенной зоны (эВ)
Рутил	тетрагональная	4.24	4.5937	4.5937	2.9581	3.0
Анатаз	тетрагональная	3.83	3.7842	3.7842	9.5146	3.20
Брукит	ромбическая	3.17	9.16	5.43	5.13	3.26
$TiO_2(B)$	моноклинная	3.64	12.16	3.74	6.51	

Рисунок 3 – Шаровидная модель рутилового TiO₂ (110) - (1 × 1) поверхности. Большие легкие шары, кислород; см все шары черные, титан. Вакансии в мостиковых кислородных рядах часто встречаются на отожженных в вакууме поверхностях. Два типа объемных дефектов, которые преобладают в восстановленном TiO₂ также указаны кристаллы - кислородные вакансии и междоузлия титана [16]

Рисунок 4 – Модель заполнения пространства объемным терминированным TiO₂ (110) - (1 × 1). Маленькие сферы представляют собой Ti, а большие сферы представляют собой O [17]

Поверхностная структура рутила TiO_2 (110) хорошо охарактеризована. Он состоит из рядов мостиковых атомов кислорода, лежащих над Шарико-стержневые плоскостной поверхностью. И заполняющие пространство модели поверхности рутила TiO_2 (110) - (1 × 1) демонстрируют двух и трехкратно скоординированные атомы кислорода на рисунках 3 и 4. собой так Двухкоординированные представляют называемые атомы мостиковые могут быть легко атомы кислорода, которые удалены термическим из-за ИХ ненасыщенной координации. Ряды отжигом мостиковых атомов кислорода расположены непосредственно поверх 6кратно координированных рядов Ті.

Что касается расчетов, поверхность (110) имеет самую низкую поверхностную энергию, в то время как (001) почти нестабильна. Равновесная форма макроскопического кристалла рутила представлена на рисунке 5. Равновесные формы различных структур зависят от условий синтеза из-за вариаций поверхностной энергии и поверхностного натяжения в различных средах [18]. Равновесная форма рутила в конструкции Вульфа состоит из тетрагональной призмы, ограниченной (110) и оканчивающейся парой тетрагональных пирамид, ограниченных (011). Согласно результатам, среди граней кристаллов рутила наиболее устойчивой является поверхность (110) [19].

Рисунок 5 – Равновесная форма макроскопических кристаллов рутила TiO₂ используя конструкцию Вульфа [20]

Рисунок 6 – (а) Равновесная форма кристалла TiO₂ в фазе анатаза в соответствии с конструкцией Вульфа и поверхностными энергиями. (b) Изображение кристалла минерала анатаза [21]

Рисунок 7 – Равновесная форма макроскопического (а) брукита [54] и (b) ТіО₂(B) кристаллы, использующие конструкцию Вульфа и поверхностные энергии [22]

Исходя из конструкции Вульфа и поверхностных энергий, равновесная форма фазы анатаза показана на Рисунке 6 (а), и в сравнении с кристаллом минерала анатаза на Рисунке 6 (b). На рисунке 7 показана форма Вульфа кристаллов брукита и TiO₂(B). Равновесная кристаллическая структура брукита имеет семь различных граней. Плоская шестиугольная призма, построенная по формулам (001), (100), (110) и (<u>110</u>) является форма TiO₂(B)

1.1.2. Нанолисты ТіО2 (двумерные)

Нанолист представляет собой наноразмерный хлопьевидный материал с плоской поверхностью и высоким соотношением сторон. Кроме того, нанолисты имеют чрезвычайно малую толщину 1-10 нм и поперечный размер от субмикронного уровня до нескольких десятков микрометров. Форма обеспечивает низкую мутность, отличную адгезию к основанию и Нанолисты демонстрируют высокую гладкость. фотокаталитические свойства, включая фотокаталитическое разложение органических молекул и супергидрофильность, под воздействием УФ-излучения. Сочетание их фотокаталитических свойств и очень гладкой поверхности привело к потенциальному применению нанолистовых пленок В качестве самоочищающихся покрытий.

Нанолисты TiO₂ обычно получают в соответствии с щелочным гидротермальным процессом с использованием порошка TiO₂ в качестве прекурсора или из протонных гидратов титаната с последующим процессом прокаливания или гидро / сольвотермическими реакциями.

1.2 Фотокатализ

термина Есть много определения «фотокатализ». Самые распространенные из них следующие: «Фотокатализ - это ускорение фотореакции в присутствии катализатора». Еще одна более обогащенная версия - одинаково распространены: «Фотокатализ - это процесс образования АФК (генерируют активные формы кислорода) водной средой в присутствии твердого гетерогенного катализатора и облучения светом определенного образца». Во время фотокатализа свет с подходящей длиной волны, частотой и, следовательно, энергией, чтобы преодолеть энергетическую щель запрещенной зоны проходит на полупроводниковом фотокатализаторе, то валентной зоны возбуждаются электроны ИЗ И переходят В зону проводимости, оставляя положительные дырки В валентной 30НЫ. Фотокатализаторы работают лучше всего, если частицы очень мелкие с большим отношением площади поверхности к объему и размером около 4–21

нм; Это означает, что наноструктурированный диоксид титана был бы идеальной формой для фотокатализатора диоксида титана.

1.2.1 Гетерогенный и гомогенный фотокатализ

-Фотокатализ это ОДИН ИЗ передовых процессов окисления, основанный на генерации очень реактивных гидроксильных радикалов, которые очень быстро и неизбирательно усиливают окисление органических веществ в воде. Гетерогенный фотокатализ включал фотоиндуцированную реакцию, ускоренную присутствием катализатора полупроводников. Одним из наименее сложных применений фотокатализа является суспендирование фотокатализатора в растворе и его облучение светом. В наноразмерной фотокаталитической системе каждая наночастица рассматривается как интегрированная система, состоящая из короткозамкнутого фотоанода и фотокатода. Эта простая система реализации предлагает преимущества невысокой стоимости. Однако простота также создает проблему низкой эффективности и эффективность за счет рекомбинации; потому что центры окисления и восстановления на наномасштабе в таких интегрированных системах часто плохо. Это приводит к рекомбинации заряда в отдельном фотокатализаторе или на поверхности обоих [23]. Кроме того, смесь продуктов окисления и восстановления вызывает опасения по поводу безопасности и дополнительных затрат на разделение смеси. Восстановление или удаление наноразмерных фотокатализаторов может быть выполнено путем иммобилизации фотокатализатора на подложке, в то же время поддерживая положительный эффект [24]. В иммобилизованной порошкообразной фотокаталитической системе субстрат не участвует в реакции, а просто служит системой поддержки. Идея не только облегчает фотокатализ в жидкости, но также открывает путь для проведения реакции в газовой фазе [25]. В случае гомогенного фотокатализа растворенные в растворе корешки могут катализировать реакцию, и реакцию можно проводить как в газовой, так и в жидкой среде [26]. Что касается фотокатализа, светопоглощающие и каталитические единицы также могут быть гомогенными молекулами, растворенными в воде, а растворенные в растворе радикалы катализируют реакцию [27].

О применении диоксида титана в фотокаталитической реакции впервые сообщили Фудзисима и Хонда [28]. Фудзишима и Хонда изучали TiO₂ как фотокатализатор для разделения воды на водород и кислород в 1972 году, он привлек значительное внимание, и были предприняты попытки улучшить его каталитические характеристики. Самым большим препятствием для использования TiO₂ в качестве фотоактивированного катализатора является

большой энергетический зазор между зоной проводимости и валентной зоной.

1.2.2 Фотокаталитическое расщепление воды

фотоэлектрокаталитических свойств TiO2 были Исследования активизированы в 1970-х годах Фудзисимой и его сотрудниками [29], которые показал что TiO₂ может быть использован в качестве электрода в фотоэлектролитической ячейке для производства чистого водорода за счет расщепления воды [30] как показано на рисунке 8. Электрохимический фотоэлемент состоит из двух электродов: фотокатализатора TiO₂ в качестве анода и Pt в качестве противоэлектрода. Когда электрод из TiO₂ облучается светом, длина волны которого совместима с шириной запрещенной зоны TiO_2 , образуются фотогенерируемые электроны [31]. И дырки Принципиальная схема фотоэлектрохимической ячейки показана на рисунке 28.

Рисунок 8 – Принципиальная схема фотоэлектрохимической ячейки [32]

Фотокаталитические реакции ТіО2 следующие:	
$TiO2 + 2hv \rightarrow 2e - + 2h +$	(3)
$H2O + 2h + \rightarrow (1/2) O2 + 2H + (на TiO2-электроде)$	(4)
$2H + + 2e - \rightarrow H2$ (на Pt электроде)	(5)
Общая реакция такова:	
$H2O + 2hv \rightarrow (1/2) O2 + H2$	(6)

Для производства водорода уровень СВ должен быть более отрицательным в электрохимическом масштабе, чем потенциал выделения водорода (ЕН2 / Н2О) для перемещения электронов от поверхности полупроводника к противоэлектроду, в то время как уровень VB должен быть более положительным, чем уровень окисления воды (ЕО2 / Н2О) для

эффективного производства кислорода без приложенного потенциала. Рисунок 9 демонстрирует основной принцип общей реакции диссоциации воды на твердом полупроводниковом фотокатализаторе [33].

Рисунок 9 – Схематическая диаграмма, показывающая потенциалы расщепления воды, происходящего на TiO₂ поверхности [34]

TiO₂ наночастицы облучаются УФ / видимым светом, Когда получаются фотогенерированные отверстия. В результате фотогенерируемые дыры подвергаются реакции окисления с ОН⁻ или H₂O и, таким образом, ОН%. Этот радикал ОН генерировать в основном ответственен за Как деградацию органических соединений. показано В формуле, эффективный кислород, захваченный электронами (О2), что предотвращает рекомбинацию электронов и фотогенерированных дырок. Если кислород ограничен, быстрая рекомбинация фотоэлектронов и дырок в TiO₂ снижает эффективность фотокаталитических реакций [35].

Чистый TiO₂ НЧ могут быть фотоактивированы УФ-светом. Из-за вредного воздействия ультрафиолета в медицине, которые, как сообщается, повреждением ДНК (мутации, однонитевые связаны с разрывы, двухцепочечные разрывы и т. д.), УФ обычно предпочтительнее избегать и заменять другими. Фотокаталитический отклик TiO₂ в видимом свете может быть достигнута химического легирования путем металлами ИЛИ элементами. неметаллическими химическими Новые поверхностные модификации катионные стратегии могут привести к биоинтерактивным интерфейсам [36].

1.2.3 Фотокаталитическая активность

В настоящее время исследователи сосредоточены на повышении фотокаталитической активности TiO₂ путем создания нанокомпозитов с неметаллами и металлами, поскольку фотокаталитическая активность TiO₂ быть уменьшением нежелательной рекомбинации может усилен фотоиндуцированных дырок электронов, расширением И а также

фотоотклика катализатора на область видимого света. Функционирование структуры, размера и размерности данного материала является общим подходом к изучению оптических свойств. Когда размер частиц сравним или меньше, чем диаметр экситона Бора, их оптические свойства становятся зависимыми от размера из-за квантового ограничения электронов и дырок [37]. Наноструктурированные материалы широко изучаются из-за их улучшенных свойств по сравнению с их объемными аналогами. Форма и размер существенно влияют на основные характеристики и способы использования материалов. Многие научные исследователи интересовались синтезом материалов с контролируемым размером И формой [38]. Мелкодисперсный размер частиц диоксида титана перспективен для различных применений [39]. Хорошо диспергированный диоксид титана играет жизненно важную роль в солнечных элементах, люминесцентных материалах, имеет каталитическую и антибактериальную активность благодаря своим специфическим свойствам [40]. Ионы металлов, включая V, Zn, Cr, Mn, Al, Co, Fe, Ni, Ag, Au, Pt, Pd, Bi, в основном используются для легирования TiO₂ для уменьшения энергии запрещенной зоны и для красного смещения TiO₂ поглощение из УФ-области, что приводит к значительному увеличению эффективности фотокатализа УФ-излучения [41].

1.3 Модификации

Исследования модифицированного TiO₂ в основном направлены на ширины запрещенной уменьшение зоны улучшения ДЛЯ его фотореактивности при солнечном освещении. Описание образования новых состояний в запрещенной зоне полупроводников и локализованной и делокализованной природы связанных электронов, несомненно, является важной задачей для понимания свойств легированных оксидов [42]. Легирование вызывает образование вакансий, дефектов внедрения или замещения, которые изменяют цвет, оптические и магнитные свойства, проводимость, реакционную способность и т. Д. Легированных оксидов [43]. Легирование диоксида титана анионами, такими как N, C и S, приводит к красному смещению края поглощения легированного диоксида титана и, таким образом, вызывает поглощение более длинных волн в активном в видимом свете TiO₂.

1.3.1 Загрузка благородных металлов

Осаждение благородного металла на полупроводниковые наночастицы является важным фактором для максимизации эффективности фотокаталитических реакций [44]. Принято считать, что благородный металл

действует фотоиндуцированных носителей как сток для заряда И способствует процессам межфазного переноса заряда. Сообщалось, что благородные и полудрагоценные металлы, включая Pt, Au, Pd, Rh, Ni, Cu и Ag, очень эффективны для усиления фотокатализа TiO₂ [45]. Поскольку благородных металлов TiO₂, уровни Ферми этих ниже, чем y фотовозбужденные электроны могут передаваться от СВ к металлическим осажденным на поверхности TiO₂, частицам, В то время как фотогенерированные дырки VB остаются на TiO_2 . Эти активности значительно снижают возможность рекомбинации электронов и дырок, что приводит к эффективному разделению и усилению фотокаталитических 30 реакций [46]. Karakitsou et al. [47] показали, что в ближнем УФ-диапазоне (250-400 нм) анатаз, допированный платиной, демонстрирует скорости продукции H2, которые выше, чем у рутильной формы, примерно в семь раз. Они пришли к выводу, что на эффективность фотокатализаторов Pt / TiO2 существенно влияет кристаллографическая структура TiO₂.

1.3.2 Ионный допинг

Легированный TiO₂ имеет другие свойства поверхности по сравнению с TiO_2 , включая толщину слой пространственного чистым заряда, существование и концентрация поверхностных состояний [48]. Допирование изменяет химическую природу и электронную структуру легированного оксида. Производительность TiO₂ может можно улучшить за счет сужения запрещенной зоны, что приводит к увеличению фотоактивности в видимой области спектра. Было обнаружено, что пороговая фотоэнергия ДЛЯ активации образцов легированного диоксида титана изменяется, ЧТО приводит к тому, что смещенный в красную область край адсорбции улучшает фотореактивные свойства диоксида титана [49].

Повышение или снижение фотокаталитической активности объясняется изменением объемной электронной структуры полупроводника, что, в свою очередь, влияет на его электронно-дырочную генерацию и способность разделения при освещении [50]. Положение уровня энергии Ферми, образование новых уровней энергии за счет взаимодействия примеси внедрения решеткой полупроводника с И электропроводность полупроводника также влияет на свойства поверхности, такие как толщина слоя пространственного заряда, наличие и концентрация поверхностные состояния и потенциалы разложения, влияющие на процесс фотокоррозии. Хотя в литературе встречаются разногласия относительно объяснения красного смещения края поглощения, легированного TiO₂, исследователи сходятся во мнении, что кислородные вакансии и связанные с ними центры

окраски являются наиболее вероятными причинами повышения светочувствительности [51].

1.3.3 Ионная имплантация

Считается, что так называемые «фотокатализаторы второго поколения», созданные методами ионной инженерии, являются наиболее эффективными для улучшения фотокаталитических свойств TiO₂ за счет изменения его электронной структуры [52]. Бомбардировка TiO₂ ионами переходных металлов приводит к инжекции этих ионов в решетку и взаимодействию с TiO_2 . Yamashita et al. изучили фотокаталитические свойства TiO_2 , имплантированного Cr + и V +. Процесс имплантации проводился с помощью ионного имплантера, состоящего из источника ионов металлов, высоковольтного ускорителя (150)масс-анализатора, ИОНОВ кэВ) И высоковакуумного насоса [53]. Они обнаружили, что ионная имплантация приводит к красному сдвигу в спектре поглощения, что приводит к более эффективному разложению NO на N2, O2 и N2O при 275 К в области [54]. света Степень красного смещения зависела видимого ОТ имплантированного иона металла и его концентрации. V, Cr, Mn, Fe и Ni вызывали большой сдвиг полосы поглощения TiO2 в видимую область. Имплантированные оксиды титана Al, Mg или Ti не показали никакого сдвига, что означает, что красный сдвиг зависит не только от процесса высокоэнергетической имплантации, взаимодействия но И OT имплантированных ионов с TiO₂. Порядок результирующего увеличения фотокаталитической чувствительности оказался следующим: V> Cr> Mn> Fe> Ni ионы. На рисунках 26 и 27 представлены УФ-видимые спектры имплантированных и химически легированных ионов Cr [52]. Это означает, что красное смещение зависит не только от процесса высокоэнергетической имплантации, но и от взаимодействия имплантированных ионов с TiO₂. Порядок результирующего увеличения фотокаталитической чувствительности оказался следующим: ионы V> Cr> Mn> Fe> Ni. На рисунках 26 и 27 представлены УФ-видимые спектры имплантированных и химически легированных ионов Cr [52]. Это означает, что красное смещение зависит не только от процесса высокоэнергетической имплантации, но и от взаимодействия имплантированных ионов с TiO₂. Порядок результирующего увеличения фотокаталитической чувствительности оказался следующим: V> Cr> Mn> Fe> Ni ионы. На рисунках представлены УФ-видимые спектры имплантированных и химически легированных ионов Cr [52].

По сравнению с обычными катализаторами в фотокатализе используется режим фотонной активации катализатора, заменяющий механизм

термической активации. Электронные свойства полупроводников характеризуются валентной зоной и зоной проводимости, которые разделены энергетической запрещенной зоной.

1.4 Золь-гель технология

Наночастицы TiO₂ можно получит с использованием различных химических и физических методов, включая химическое осаждение из паровой фазы [55], обратную микроэмульсию [56], гидротермальный [57], золь-гель [58], сольвотермический [59], микроволновый метод [59] и гидролитическое осаждение [60]. Выбор метода определяет свойства образующегося диоксида титана. По сравнению с другими методами, которые сложны в эксплуатации, требуют высоких температур реакции и отжига и требуют много времени для получения конечного выхода, золь-гель метод является наиболее предпочтительным. Тонкая пленка TiO₂, полученная методом золь-гель, является наиболее традиционным методом, который обработку, обеспечивает предлагает низкотемпературную высокую однородность поверхности, легкое нанесение покрытия на большую площадь поверхности и низкую стоимость [61]. Манаси [62] обнаружил, ЧТО TiO_2 , полученные золь-гель-методом, наночастицы являются и имеют меньший размер кристаллитов по высококристаллическими сравнению с наночастицами, полученными гидротермальным методом. В золь-геле предшественник, растворитель, вода и катализатор являются известными основными параметрами, которые могут контролировать свойства TiO₂ для фотокаталитической активности, такие как содержание фазы, кинетика фазового перехода, распределение частиц по размерам, площадь поверхности, морфология и кристалличность тонкой пленки TiO₂. Однако основные свойства, которые дают преимущество золь-гель методу, включают молекулярное сходство, возможность использования различных прекурсоров, микроструктуру и контроль свойств, кристаллы высокой чистоты в низких условиях, низкую стоимость и простоту использования изза относительно низких температур [63]. Для этого случая нанопорошки диоксида титана были приготовлены простейшим золь-гель методом. Зольгель - это химический путь, который включает два этапа; гидролиз и конденсация [64]. Процесс золь-гель включает переход системы от жидкой «золь» (коллоидные системы с частицами размером от 10⁻⁷ до 10⁻⁵ см) в твердую стадию «гель», который образует пространственную структуру (сетку). При дальнейшей термообработке пористый гель превращается в стекло, керамику или пористое твердое тело. Один из достоинств золь-гель метода – возможность контроля легирующих компонент геля на стадии

приготовления золя. Метод центрифигурирования пленкообразующих растворов весьма привлекателен, так как дает возможность формировать сравнительно однородную пленку толщиной примерно 0,1 мкм на пластине достаточно большого диаметра, что способствует развитию тонкопленочных технологий.

В последние годы TiO_2 вызывает большой интерес у исследователей. Это связано с его широкой запрещенной зоной (3,2 эВ), которая увеличивает фотокаталитическую активность при очистке воды и преобразовании солнечной энергии [65]. TiO_2 также использовался для очистки скважинной воды путем восстановления токсичных полуметаллов, таких как трехвалентный мышьяк, до пятивалентного мышьяка и шестивалентного хрома до трехвалентного хрома, которые менее токсичны [66]. В случаях, когда в воде обнаруживаются органические загрязнители, происходит минерализация без образования вторичного загрязнителя [67].

TiO₂ может поглощать только излучение с длиной волны меньше 400 (ультрафиолетовый свет), которое занимает небольшой процент солнечной системы (4%). Исследователи пытались настроить ширину запрещенной зоны TiO_2 не менее чем на максимум 0,5 эВ, чтобы сделать его пригодным для видимого света, который занимает 45% солнечной системы. Такая уменьшения ширины запрещенной зоны практика улучшает фотокаталитическую активность и позволяет максимизировать солнечные спектры при фотокатализе. Легирование полупроводников переходными металлами (серебро, золото, платина, никель и т. Д.), Использование смешанных систем двойных и тройных оксидов металлов позволяет уменьшить ширину запрещенной зоны [68]. Синтезированные наночастицы TiO₂, комбинация оксидов и сульфидов с наночастицами TiO₂ также могут увеличивать фотокаталитическую активность [69]. Это увеличивает эффективность фотокаталитического процесса за счет увеличения хемосорбции загрязнителей на поверхности [70].

В фотокаталитических приложениях TiO₂ является наиболее широко используемым полупроводником, но его характеристики ограничены из-за большой ширины запрещенной зоны, примерно 3,2 эВ для фазы анатаза в порошках. Существует несколько методов модификации TiO₂ для получения отклика в видимом свете [71]; некоторые методы включают легирование металлами [72] и неметаллами [73], а также несколько методов сенсибилизации красителями [74], квантовыми точками [75] и сопряжение других полупроводников [76], среди прочего.

Метод центрифугирования - это хорошо зарекомендовавший себя, простой и дешевый метод, который дает равномерное покрытие. Хотя тонкие

пленки TiO₂ широко используются в области фотокатализа, подробных исследований влияния золь-гелевого состава TiO₂ на получение высокогомогенных и неповрежденных (прилипающих) каталитических покрытий немного.

Поэтому в настоящей работе золь-гели TiO₂ с различными концентрациями каждого из компонентов, таких как предшественник диоксида титана, кислотный катализатор, стабилизирующий агент и поверхностно-активное вещество, готовятся в спиртовой среде. Изучено влияние концентрации компонентов в золь-геле на морфологию поверхности и топографию пленок TiO₂ для получения однородных и хорошо сцепляющихся покрытий катализатора.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1 Методика осаждения тонких пленок диоксида титана методом золь-гель

Материалы: ТіАсАс - диизопроксид титана – бис (ацетилацетонат) Форма: раствор Состав: Ті, 9-10,5% гравиметрический Реакционное соответствие: осново: титан Тип реагента: катализатор Концентрация: 75 % в изопропаноле Показатель преломления: n20/D 1.4935 Плотность: 0,995 г/мл при 25 °C Подготовка образцов

Образцы стекол промывались проточной водой, с последующим споласкиванием дистиллированной водой и обезжириванием органическими растворами. Раствор хелмонекс (5%, 1 часть хелмонекса и 5 частей воды) наносился и очищался щеткой с дальнейшей промывкой стекла со всех сторон (рисунок 10). Ультразвуковая очистка (рисунок 11) органическими растворителями проводилась в течение 10 минут с последующей продувкой в потоке инертного газа.

Рисунок 10 – Очистка стеклянных подложек

Рисунок 11 – Очистка в ультразвуковой ванне

Стекла просушивались в сушильном шкафу при температуре 50° С. Стекла ставлялись на ребрышке в чашки Петри. Открыв аргон высушивались стекла по одному с двух сторон в вытяжном шкафу.

2.2 Нанесение растворов методом спрей-пиролиз и спин-коутинг

Плитку закрыли фольгой. Стекла клали на электрическую печь при температуре 25°С. Включили вытяжку. Выставились стекла в два ряда друг с другом плотно. Включили температуру на 75° С, 100° С, 125° С, 175° С, 200° С, 225° С, 250° С, 275° С, 300° С с интервалом 2 минуты.

Рисунок 12 – Нанесение раствора методом спрей-пиролиза

Тонкие пленки TiO₂ нанесены методом спрей-пиролиза на стеклянных подложках как показано на рисунке 12. Краскопульт промылось

изопропиловым спиртом. Запустив аргон пропустили его на бумажный фильтр на расстояний 15-20 см. Наносили слоями с паузой в 5 секунд перед каждым слоем. После нанесение образцы отжигались в муфельном печи при температуре 500° С на 30 минут.

Рисунок 13 – Процесс нанесения слоев на установке спин-коутинг

Тонкая пленка TiO₂ были получены процессом нанесения, методом спин-коутинг на стекле как показано на рисунке 13. Параметры нанесение спин-коутинг 2500 оборотов в минуту, 30 секунд. Сушили образец муфельной печи 150° С 5 минут. Отжигалось образец при температуре 500° С 30 минут в муфельной печи.

2.3 Методы исследования

Оптические свойства тонких пленок TiO_2 было исследована с помощью спектроскопии УФ-видимый на системе по измерение квантовой эффективности фирмы PV Measurements, модель QEX10 (Рисунок 14). Источник света было светодиодные лампы. Режим работы было в диапазоне от 0 до 1100 нм.

Рисунок 14 – Система по измерение квантовой эффективности PV Measurements QEX10

Измерение фотокаталитической активности пленок TiO2, проводили на специализированной испытательной установке. Фотоэлектрохимические (PEC) тесты были выполнены на Elins P-40X потенциостате с трехэлектродной конфигурацией: электрод сравнения Ag/AgCl, темный электрод из платиновой фольги и рабочий электрод TiO2/стекло. В качестве источника освещения для BAX использовался имитатор солнечной энергии «МСИ-250». В качестве электролита использовали 0,5 М водный раствор КОН. Лампа ксеноновая мощность – 300 Ватт. Раствор КОН 0.1 М.

Рисунок 15 – Потенциостат-гальваностат Р-40Х с модулем измерения электрохимического импеданса FRA-24M

Морфология пленок TiO_2 была исследована на растровом электронном микроскопе фирмы JEOL, модель JSM-6490LA (Рисунок 16). Ускоряющее напряжение от 10, 20 и 30кV, увеличением от х4000, х8500, х90000, режимы

электронах, изображение в отраженных электронах в топографическом, композиционном и теневом контрасте.

Рисунок 16 – Растровый электронный микроскоп JEOL JSM-6490LA

Полученные тонкие пленки TiO₂ характеризовали на сканирующем зондовом микроскопе модели JSPM-5200 фирма JEOL (Рисунок 17), метод сканирования образцом, атомно-силовой и туннельный режимы работы.

Рисунок 17 – Сканирующий зондовый микроскоп JEOL JSPM-5200

Структура синтезированных пленок TiO2 исследовалась методом рентгеноструктурного анализа на дифрактометре «Дрон-6» (Рисунок 18). Рентгеновский луч, полученный от анода медной трубки CuK_αc длиной

волны $\lambda = 1.54$ Å, направляется на кристалл-монохроматор. Образец закреплялся горизонтально на одном уровне с держателем при помощи 2-х сторонней проводящей ленты. Затем образец с держателем устанавливался в анализатор. Измерения проводились в нормальных условиях при параметрах дифрактометра 40кВ и 30мА. Область значений 20 анализировалась от 20 до 80 с шагом 0,05 и шаговым периодом 5с.

Рисунок 18 – Рентгеновский дифрактометр Дрон-6

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Соотношение раствора для образцов:

1/9 диизопроксид титана 0,9 мл и 8/9 изопропиловый спирт 8,1 мл.

В методе спрей-пиролиза наносились краскопультом.

При методе спин-коутинга наносились дозатором. Объем дозатора для образцов были 0,1 мл.

На таблице 2 показано параметры осажденные тонких пленок TiO₂ нанесенных методом спрей-пиролиза и спин-коутинга.

N⁰	Подложк	Метод	Количест	Температу
образца	a	нанесение	во слоев	ры отжига, °С
1	Стекло	Спрей-пиролиз	15	500
2	Стекло	Спрей-пиролиз	25	500
3	Стекло	Спрей-пиролиз	35	500
4	Стекло	Спин-коутинг	1	500
5	Стекло	Спин-коутинг	1	300
6	Стекло	Спин-коутинг	1	300

Таблица 2. Параметры осажденные тонких пленок TiO₂

3.1 Характеристики оптических свойств тонких пленок TiO2

На Рисунке 23 показаны спектры поглощения образцов который были получены при температуре 500 С. Края поглощения тонких пленок TiO_2 оказались равными 360 и 410 нм, а их ширина запрещенной зоны на рисунке 24 (E_g) составила 3,19 и 3,29 эВ. E_g рассчитывалось из графиков Таука с использованием соотношения:

 $\alpha h v = A(h v - E_g)^{\eta}$

где α , hv и A - коэффициент поглощения, энергия падающего фотона и константа пропорциональности соответственно. η - константа, которая зависит от природы перехода ($\eta = \frac{1}{2}$ для прямой запрещенной зоны анатаза TiO₂). Прямая запрещенная зона уменьшается с толщиной пленки из-за изменения высоты барьера на границах зерен, что, в свою очередь, увеличивает локализованную плотность состояний вблизи краев зоны. С

уменьшением ширины запрещенной зоны минимальная энергия, необходимая для возбуждения электронов из валентной зоны в зону проводимости, также уменьшается и улучшает фотокаталитические характеристики.

Оптическая плотность (рисунки 19-22) рассчитано по формуле:

D=-lgT

где Т – коэффициент пропускания.

Рисунок 19 – Диаграмма оптической плотности тонких пленок TiO₂ на стеклянной подложке

Рисунок 20 – Диаграмма оптической плотности тонких пленок TiO₂ на стеклянной подложке

Рисунок 21 – Диаграмма оптической плотности тонких пленок TiO₂ на стеклянной подложке

Рисунок 22 – Диаграмма оптической плотности тонких пленок TiO₂ на стеклянной подложке

Рисунок 23 – Спектры поглощения тонких пленок TiO₂ на стеклянной подложке

Рисунок 24 – График Таука из тонких пленок TiO₂ на стеклянной подложке.

3.2 Характеристики морфологии тонких пленок TiO₂

На СЭМ получено изображения образцов полученных методом спрейпиролиза. На рисунках 25-27 видно, что показывают менее шероховатый поверхность образцов. Анализ показал на формирование разных толщину для образцов. Толщина №3 образца полученных методом спрей-пиролиза составляет 76 нм. Такие формы обеспечивает низкую мутность, отличную адгезию к основанию и высокую гладкость. Тонкие пленки демонстрируют фотокаталитические свойства, включая фотокаталитическое разложение органических молекул. Все из того что пленки представляет собой чрезвычайно малую толщину, примерно 100 нм.

Рисунок 25 – Морфология тонких пленок TiO₂ на стеклянной подложке, №1 образец, диапазоне 5 мкм

Рисунок 26 – Морфология тонких пленок ТіО₂ на стеклянной подложке, №2 образец, диапазон 20 мкм

Рисунок 27 – Морфология тонких пленок ТіО₂ на стеклянной подложке, №3 образец, диапазон 2 мкм

На АСМ получено рисунки образцов полученных методом спрейпиролиза и спин-коутинг. На рисунках 28-31 видно, что рисунки показывают более гладкую поверхность образцов. На рисунке 31 показывает на формирование мелких островковых сферических кристаллитов с размерами 96 нм.

Рисунок 28 – Морфология тонких пленок ТіО₂ на стеклянной подложке, №1 образец, диапазон 25 мкм

Рисунок 29 – Морфология тонких пленок ТіО₂ на стеклянной подложке, №2 образец, диапазон 25 мкм

Рисунок 30 – Морфология тонких пленок ТіО₂ на стеклянной подложке, №3 образец, диапазон 6 мкм

3.3 Структура пленок ТіО2

Пики XRD дают информацию о размере зерен, структуре и деформации решетки. Диаграмма рентгеноструктурный анализа тонких пленок TiO_2 на стеклянной подложке показаны на рисунке 32. Диаграмма тонких пленок TiO_2 совпадают с дифракционными картинами анатаза TiO_2 . В таблице 3 приведены параметры решетки и размер зерен анатаза тонких пленок TiO_2 . Средний размер зерен анатаза TiO_2 оценивается с помощью уравнения Шеррера.

Уравнение Шеррера:

$$D = \frac{K\lambda}{\beta \cos\theta}$$

где D - средний размер кристаллитов, К - коэффициент формы, принимаемый равным 0,94, λ - длина волны рентгеновского излучения (CuKα = 0,15418 нм), β - полная ширина на полувысоте после построения соответствующей базовой линии, а θ - угол дифракции в положении пиков.

Рисунок 32 – Диаграмма рентгеноструктурного анализа тонких пленок TiO₂ на стеклянной подложке

Та	аблица 3.	Параметры	решетки	и размер	зерен	анатаза	тонких	пленок	TiO_2 в
				образца	ax.				

e e produit								
Образцы	а = b (нм)	с (нм)	V (нм ³)	Размер зерен (нм)				
Nº1	0.37257	0.93931	0.13039	8.2				
N <u>o</u> 2	0.37128	0.93917	0.12947	9.8				
N <u>o</u> 3	0.37197	0.93933	0.12997	11.2				
<u>№</u> 4	0.37311	0.93352	0.12995	11.4				

3.4 Характеристики фотокаталитической активности

Фотокаталитическая активность была проверена путем фотодеградация КОН как показано на рисунке 25. Образцы были разного отжига по температуре. Была замечена незначительная фотокаталитическая деградация КОН в отсутствие пленок TiO₂ при освещении видимым светом, как и ожидалось. Наблюдалась значительная деградация КОН в случае тонких пленок TiO₂, что указывает на то, что эти пленки были фотокаталитически более разложением. активными И, следовательно, быстры К TiO₂ Фотокаталитическая активность тонких пленок обусловлена образованием высокоокислительных радикалов, таких как гидроксил (HO⁻), пероксид водорода (HO_2^-) и супероксид ($^-O_2$), образующихся на поверхности катализатора TiO₂ во время облучения видимым светом. На рисунке 33 вольтамперные характеристики пленок TiO₂ на стекле представлена отожженных при температуре 300 и 500 °С при облучении образцов

ксеноновой лампой 300 Вт. Из изображения мы можем видеть, что начальный потенциал выделения водорода при 300 ^оС появляется примерно при 0,5 В, в то же время он достигает примерно -0,6 В, для пленки отожженной при 500 ^оС. Плотность тока составляет приблизительно 0.94 мА/ст² для образца при 300 ^оС и 0.96 мА/ст² для 500 ^оС соответственно. При начальном высоком потенциале и низкой плотности тока сложно наблюдать формирование пузырьков водорода, образующиеся на электроде.

Рисунок 33 – ВАХ характеристики тонких пленок TiO₂

4. ЗАКЛЮЧЕНИЕ

В ходе выполнения работ была проведена серия экспериментов по зольгель синтезу тонких пленок TiO₂, исследованы характеристики образцов, а также измерена их фотокаталитическая активность. Были получены следующие результаты:

Методом золь-гель при применении спрей-пиролиза и спин-коутинге были синтезированы тонкие пленки TiO₂ с различной толщиной слоев на стеклянной подложке.

Спектры поглощения образцов пленок TiO₂ показали УФ диапазон со значением до 410 нм. В видимом спектре поглощение не обнаружено.

СЭМ анализ показал на формирование толщины слоев 76 нм для образцов, полученных методом спин-коутинг при последовательном нанесении раствора в 6 раз.

АСМ изображения образцов измеренные в полуконтактном режиме показывают на формирование мелких островковых сферических кристаллитов с размерами приблизительно 100 нм.

Рентгеноструктурный анализ тонких пленок TiO₂ показал формирование аморфной структуры в процессе синтеза наноразмерных пленок. Пиков кристалличности не определено.

При облучении образцов ксеноновой лампой 300 Вт. Выяснилось, что начальный потенциал выделения водорода при 300 $^{\rm O}$ C появляется примерно при 0,5 В, в то же время он достигает примерно -0,6 В, для пленки отожженной при 500 $^{\rm O}$ C. Плотность тока составляет приблизительно 0.94 мA/cm² для образца при 300 $^{\rm O}$ C и 0.96 мA/cm² для 500 $^{\rm O}$ C соответственно. При начальном высоком потенциале и низкой плотности тока сложно наблюдать формирование пузырьков водорода, образующиеся на электроде.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterizationtechniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12934.

2. Q. Zhang, C. Li, Pure anatase phase titanium dioxide films prepared by mist chemical vapor deposition, Nanomaterials 8 (2018) 827–839.

3. Shi, H. Magaye, R. Castranova, V. & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology 10, 15.

4. Hanaor DAH, Chironi I, Karatchevtsev I, Triani G, Sorrell CC. Single and mixed phase TiO₂ powders prepared by excess hydrolysis of titanium alkoxide. Adv Appl Ceram 2012, 149–58.

5. Fischer K, Gawel A, Rosen D, Krause M, Abdul Latif A, GriebelJ, et al. Low-temperature synthesis of anatase/rutile/brookite TiO_2 nanoparticles on a polymer membrane for photocatalysis. Catalysts 2017, 209.

6. Monai M, Montini T, Fornasiero P. Brookite: nothing newunder the sun? Catalysts 2017, 304.

7. Alzamani M, Eghdam E. Sol–gel synthesis of TiO_2 nanostructured film on SiO_2 pre-coated glass with acomparative study of solvent effect on the film properties. J Sol-Gel Sci Technol 2016.

8. Komaraiah D, Madhukar P, Vijayakumar Y, Ramana Reddy MV, Sayanna R. Photocatalytic degradation study of methylene blue by brookite TiO_2 thin film under visible light irradiation. Mater Today Proc 2016, 3770.

9. P. Sanjay, K. Deepa, J. Merline Shyla, J. Madhavan, S. Senthil, Mater. Today: Proc. 8 (2019) 130–135.

10. Lazzeri, M., A. Vittadini, and A. Selloni, Structure and energetics of stoichiometric TiO_2 anatase surfaces. Physical Review B, 2001. 63(15): p. 155409.

11. Li, G., L. Li, J. Boerio-Goates, and B.F. Woodfield, High purity anatase TiO_2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry.

12. Ocana, M., J.V. Garcia-Ramos, and C.J. Serna, Low-Temperature Nucleation of Rutile Observed by Raman Spectroscopy during Crystallization of TiO₂. Journal of the American Ceramic Society, 1992. 75(7): p. 2010-2012.

13. Marchand, R., L. Brohan, and M. Tournoux, $TiO_2(B)$ a new form of titanium dioxide and the potassium octatitanate K 2 Ti 8 O 17. Materials Research Bulletin, 1980. 15(8): p. 1129-1133.

14. Dylla, A.G., G. Henkelman, and K.J. Stevenson, Lithium insertion in nanostructured $TiO_2(B)$ architectures. Accounts of chemical research, 2013. 46(5): p. 1104-1112.

15. Cromer, D.T. and K. Herrington, The structures of anatase and rutile. Journal of the American Chemical Society, 1955. 77(18): p. 4708-4709.

16. Diebold, U., Structure and properties of TiO₂ surfaces: a brief review. Applied Physics a-Materials Science & Processing, 2003. 76(5): p. 681-687.

17. Charlton, G., P. Howes, C. Nicklin, P. Steadman, J. Taylor, C. Muryn, et al., Relaxation of TiO₂ (110)-(1×1) using surface X-ray diffraction. Physical Review Letters, 1997. 78(3): p. 495.

18. Gong, X.-Q. and A. Selloni, First-principles study of the structures and energetics of stoichiometric brookite TiO_2 surfaces. Physical review B, 2007. 76(23): p. 235307.

19. Kobayashi, M., H. Kato, and M. Kakihana, Synthesis of titanium dioxide nanocrystals with controlled crystal-and micro-structures from titanium complexes. Nanomater. Nanotechnol, 2013. 3: p. 1-10.

20. Ramamoorthy, M., D. Vanderbilt, and R. King-Smith, First-principles calculations of the energetics of stoichiometric TiO₂ surfaces. Physical Review-Section B-Condensed Matter, 1994. 49(23): p. 16721-16727.

21. Lazzeri, M., A. Vittadini, and A. Selloni, Structure and energetics of stoichiometric TiO 2 anatase surfaces. Physical Review B, 2001. 63(15): p. 155409.

22. Vittadini, A., M. Casarin, and A. Selloni, Hydroxylation of TiO_2 -B: insights from density functional calculations. Journal of Materials Chemistry, 2010. 20(28): p. 5871-5877.

23. T. Lopes, P. Dias, L. Andrade, A. Mendes, Sol. Energy Mater. Sol. Cells 128 (2014) 399.

24. M. Liu, L. Wang, G.M. Lu, X. Yao, L. Guo, Energy Environ. Sci. 4 (2011) 1372.

25. M.L. Bechec, N. Costarramone, T. Pigot, S. Lacombe, Chem. Eng. Technol. 39 (2016) 26.

26. S. Mozia, Sep. Purif. Technol. 73 (2010) 71.

27. T. Ouyang, H.H. Huang, J.W. Wang, D.C. Zhong, T.B. Lu, Angew. Chem. Int. Ed. 56 (2017) 738.

28. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37–38.

29. Fujishima, A., X. Zhang, and D. Tryk, TiO₂ photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582.

30. Fujishima, A. and X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 2006. 9(5): p. 750-760.

31. Hashimoto, K., H. Irie, and A. Fujishima, TiO₂ Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 2005. 44(12): p. 8269-8285.

32. Ahmad, H., S.K. Kamarudin, L.J. Minggu, and M. Kassim, Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews, 2015. 43: p. 599-610.

33. Navarro Yerga, R.M., M.C. Alvarez Galvan, F. del Valle, J.A. Villoria de la Mano, and J.L. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem, 2009. 2(6): p. 471-85.

34. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010. 11(4): p. 179-209.

35. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol. A: Chem. 85 (1995) 247–255.

36. Colmenares, J. C., Luque, R., Campelo, J. M., Colmenares, F., Karpiński, Z., & Romero, A. A. (2009). Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: An overview. Materials 2(4), 2228–2258.

37. Alamgir, Wasi Khan, Shabbir Ahmad, M. Mehedi Hassan, A.H. Naqvi, Opt. Mater. 38 (2014) 278–285.

38. V.A.F. Samson, S.B. Bernadsha, M. Mahendiran, K.L. Lawrence, J. Madhavan, M. V.A.

39. M. Hema, A. Yelil Arasi, P. Tamilselvi, R. Anbarasan, Chem. Sci. Trans. 2 (1) (2013) 239–245.

40. T. Sugimoto, X. Zhou, A. Muramatsu, J. Colloid Interface Sci. 259 (2003) 43–52.

41. S. Bouadila, S. Kooli, M. Lazaar, S. Skouri, A. Farhat, Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use, Appl. Energy 110 (2013) 267–275.

42. Ganduglia-Pirovano, M.V., A. Hofmann, and J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surface Science Reports, 2007. 62(6): p. 219-270.

43. Finazzi, E., C. Di Valentin, G. Pacchioni, and A. Selloni, Excess electron states in reduced bulk anatase TiO₂: comparison of standard GGA, GGA+U, and hybrid DFT calculations. J Chem Phys, 2008. 129(15): p. 154113.

44. Bumajdad, A. and M. Madkour, Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Physical Chemistry Chemical Physics, 2014. 16(16): p. 7146-7158.

45. Papp, J., H. Shen, R. Kershaw, K. Dwight, and A. Wold, Titanium (IV) oxide photocatalysts with palladium. Chemistry of materials, 1993. 5(3): p. 284-288.

46. Serpone, N., D. Dondi, and A. Albini, Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chimica Acta, 2007. 360(3): p. 794-802.

47. Karakitsou, K.E. and X.E. Verykios, Effects of altervalent cation doping of titan on its performance as a photocatalys for water cleavage. The Journal of Physical Chemistry, 1993. 97(6): p. 1184-1189.

48. Zaleska, A., Doped-TiO2: A Review. Recent Patents on Engineering, 2008. 2: p. 157-164.

49. Kuznetsov, V.N. and N. Serpone, On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO_2 specimens analysis and assignments. The Journal of Physical Chemistry C, 2009. 113(34): p. 15110-15123.

50. Choi, J., H. Park, and M.R. Hoffmann, Effects of single metal-ion doping on the visible-light photoreactivity of TiO₂. The Journal of Physical Chemistry C, 2009. 114(2): p. 783-792.

51. Daghrir, R., P. Drogui, and D. Robert, Modified TiO₂ for environmental photocatalytic applications: a review. Industrial & Engineering Chemistry Research, 2013. 52(10): p. 3581-3599.

52. Anpo, M. and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of catalysis, 2003. 216(1): p. 505-516.

53. Yamashita, H., M. Harada, J. Misaka, H. Nakao, M. Takeuchi, and M. Anpo, Application of ion beams for preparation of TiO₂ thin film photocatalysts operatable under visible light irradiation: Ion-assisted deposition and metal ion-implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003. 206: p. 889-892.

54. Adachi, K., K. Ohta, and T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 1994. 53(2): p. 187-190.

55. Q. Zhang, C. Li, Pure anatase phase titanium dioxide films prepared by mist chemical vapor deposition, Nanomaterials 8 (2018) 827–839.

56. M.S. Lee, S.S. Park, G.-D. Lee, C.-S. Ju, S.-S. Hong, Synthesis of TiO_2 particles by reverse microemulsion method using nonionic surfactants with

different hydrophilic and hydrophobic group and their photocatalytic activity, Catal. Today 101 (2005) 283–290.

57. A. Idris, Z. Majidnia, P. Roushenas, R. Nasiri, J.H. Almaki, Anatase TiO₂ nanoparticles synthesis for removal heavy metals from wasetewater, in: Presented at the International Science Postgraduate Conference 2014 UniversitiTeknologi Malaysia, 2014.

58. J.M. G.d. Salazar, C.N. Duduman, M.J. Gonzalez, I. Palamarciuc, M.I.B. Perez, I. Carcea, Research of obtaining TiO₂ by sol-gel method using titanium isopropoxide TIP and tetra-n-butyl orthotitanate TNB. Presented at the ModTech International Conference, 2016.

59. N.D.J. Hansen, "Microwave Assisted Synthesis of Titanium Dioxide Electrodes for Use in Polymer Dssc" Master of Science Thesis Stockholm, Applied chemistry, Sweden Japan, 2014.

60. T. Kalaivani, P. Anilkumar, Role of temperature on the phase modification of TiO_2 nanoparticles synthesized by the precipitation method, Silicon 10 (2017) 1679–1686.

61. Fagnern N, Leotphayakkarat R, Chawengkijwanich C,Gleeson MP, Koonsaeng N, Sanguanruang S, et al. Effect oftitanium-tetraisopropoxide concentration on thephotocatalytic efficiency of nanocrystalline thin films TiO_2 used for the photodegradation of textile dyes. J Phys ChemSolids 2012; 73(12):1483–6.

62. Karkare MM. Choice of precursor not affecting the size of anatase TiO_2 nanoparticles but affecting morphology underbroader view. Int Nano Lett 2014; 4(3):111.

63. D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material, J. Biomed. Biotechnol. 205636 (2014) 1–8.

64. N. Ismail Mohdhasmizamrazali, K.M. Amin, Hydrogen production through water splitting reaction using titanium dioxide (TiO₂) nanotubes photocatalyst, Int. J. Eng. Technol. 7 (2018) 455–458.

65. S.S. Al-Taweel, H.R. Saud, New route for synthesis of pure anatase TiO_2 nanoparticles via utrasound-assisted sol-gel method, J. Chem. Pharm. Res. 8 (2016) 620–626.

66. T.V. Nguyena, S. Vigneswarana, J.K.H.H. Ngoa, H.C. Choib, Arsenic removal by photo-catalysis hybrid system, Separ. Purif. Technol. 61 (2008) 44–50.

67. M. Umar, H.A. Aziz, Photocatalytic degradation of organic pollutants in water, Intechopen 8 (2013) 1–14.

68. M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol., A 189 (2007) 258–263.

69. S. Bakardjieva, J. Subrt, V. Stengl, M.J. Dianez, M.J. Sayagues, Photoactivity of anatase–rutile TiO_2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase, Appl. Catal., B 58 (2005) 193–202.

70. R.V. Prihod'ko, N. Soboleva, Photocatalysis: oxidative processes inwater treatment, J. Chem. (2013) 1–9.

71. M. Tahir, N.S. Amin, Advances in visible light responsive titanium oxide-based photocatalysts for CO_2 conversion to hydrocarbon fuels, Energy Convers. Manag. 76 (2013) 194–214, https://doi.org/10.1016/j.enconman.2013.07.046.

72. T. Barkhade, I. Banerjee, Optical properties of Fe doped TiO₂ nanocomposites synthesized by sol-gel technique, Mater. Today Proc. 18 (2019) 1204–1209, <u>https://doi.org/10.1016/j.matpr.2019.06.582</u>.

73. Y. Li, R. Fu, M. Gao, X. Wang, B–N co-doped black TiO₂ synthesized via magnesiothermic reduction for enhanced photocatalytic hydrogen production, Int. J. Hydrogen Energy 44 (2019) 28629–28637, https://doi.org/10.1016/j.ijhydene.2019.09.121.

74. J. Diaz-Angulo, A. Arce-Sarria, M. Mueses, A. Hernandez-Ramirez, F. Machuca- Martinez, Analysis of two dye-sensitized methods for improving the sunlight absorption of TiO_2 using CPC photoreactor at pilot scale, Mater. Sci. Semicond. Process. 103 (2019) 104640–104647, https://doi.org/10.1016/j.mssp.2019.104640.

75. T. Wu, C. Zhen, J. Wu, C. Jia, M. Haider, L. Wang, G. Liu, H.M. Cheng, Chlorine capped SnO₂ quantum-dots modified TiO₂ electron selective layer to enhance the performance of planar perovskite solar cells, Sci. Bull. 64 (2019) 547– 552, <u>https://doi.org/10.1016/j.scib.2019.04.009</u>.

76. C.H. Nguyen, M.L. Tran, T.T. Van Tran, R.-S. Juang, Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO₂/ZnO/GO composites, Separ. Purif. Technol. 232 (2020) 115962–115974, <u>https://doi.org/10.1016/j.seppur.2019.115962</u>.